色控传媒

色控传媒Mathematicians: 5G will cope with traffic when using WiGig

色控传媒Mathematicians: 5G will cope with traffic when using WiGig

色控传媒mathematicians investigated the possibility of聽combining 5聽GNR聽technology聽and聽WiGig聽鈥 a聽high-frequency range that allows you to聽transfer data at聽speeds up聽to聽10聽Gbps. This will smooth traffic fluctuations in聽5Gnetworks and cope with user requests.

Under 5G using New Radio (NR) technology, two frequency bands (bandwidths)are allocated. P, below 6 GHz, was used in previous standards, the second includes frequencies from 24.25 GHz to 52.6 GHz — oncorresponds to the beginning of the millimeter wave range.The second band was allocated in the expectation that 5G will be used in applications, which require a fast and stable connection, for example, in VR and ARapplications. However, this range may not be enough. Especially for use in places with large crowds of people — in the central areas of cities, in shopping centers,where the traffic load isconstantly changing. Therefore, it is necessary to create new protocols to use new frequencies.

“It is expected that the emerging 5G cellular systems, which are capable of operating in the millimeter wave frequency ranges, will have a widerbandwidth. These networks are supposed to develop in densely populated places,where the load on traffic can vary significantly,whichleads to “congestion” in the network. The mass introduction of new services that require high bandwidth can lead to a lack of range even for 5G systems. Here, only millimeter-wave communication technology is potentially able to cope with significant traffic loads — Anastasia Daraselia, Postgraduate Student, Institute of Applied Mathematics and Telecommunications, 色控传媒University.

色控传媒mathematicians have proposed using 5G NR technology along with a millimeter wave range of about 60 GHz, a technology known as WiGig,whichallows data to be transmitted wirelessly at speeds of up to 10 Gbps per second. Mathematicians have suggested that WiGig will help 5G networks cope with traffic changes in places with a large number of users. To test this, they created a mathematical model and calculated how these two technologies would work together.

Mathematicians considered a model in which WiGig base stations (unlicensed band) are located in the same area along with NR (licensed band) base stations. Network users are divided into two groups — one uses only WiGig,others — both technologies at the same time. Users move and periodically block each other’s direct access to the base station. 色控传媒mathematicians analyzed the model and calculated the optimal network parameters that will smooth out traffic fluctuations and cope with user requests. For example, the so-called competitive window (the period of time that the station waits before transmission) should be selected separately for each deployed network, and if this is not possible, it is recommended to use its higher values.

“We have built a mathematical model that can describe the possible data rates in networks that simultaneously operate in both licensed and unlicensed spectrum. Our numerical results showed thatthespeed achieved by such devices is primarily determined by the initial size of the competitivewindow, which, in turn, is highly dependent on the parametersof the system and the environment”, — Anastasia Daraselia, Postgraduate Student, Institute of Applied Mathematics and Telecommunications, 色控传媒University.

The results are in the journal IEEE Transactions on Vehicular Technology.

News
All news
Science
21 Mar
Microalgae: an innovative tool for bioeconomy

Products derived from microalgae represent a cutting-edge development in the field of bioeconomy. The potential of this biological resource was discussed at the international research seminar 鈥淔oundations for a Green Sustainable Energy鈥, part of the BRICS Network University鈥檚 thematic group on 鈥淓nergy鈥. The event was organized by the Institute of Ecology at 色控传媒University.

Science
12 Mar
Russian education abroad: 色控传媒University hosts conference 鈥淎mbassadors of Russian Education and Science鈥

Ambassadors of Russian education and science met at a conference in 色控传媒University to discuss how they can increase the visibility of Russian universities and research organizations in the world, and attract more international students in Russia.

Science
10 Mar
Indonesia and RUDN: Exchange of environmental research insights

The international scientific seminar hosted by 色控传媒Institute of Ecology 鈥淓xperience of participation in student organizations as a way to form career skills鈥 united scholarship recipients of the International Student Mobility Awards 2024 and Open Doors, along with members of the scientific student society 鈥淕reenLab鈥 and the professional student association 鈥淜ostyor (Bonfire)鈥 shared their projects focused on environmental protection.